7,381 research outputs found

    Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions

    Full text link
    This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419869157[EN] This article presents the experimental validation of a complete integrated one-dimensional twin-scroll turbine model able to be used in reciprocating internal combustion engine unsteady simulations. A passenger car with a twin-entry-type turbine has been tested under engine-like pulse conditions by means of a specifically built gas stand. To obtain high-resolution quality data, the turbine and turbine line pipes have been instrumented with mean and instantaneous pressure sensors as well as temperature and mass flow sensors, employing a uniquely designed rotating valve for the pulse generation. This experimental configuration enables to obtain the pressure decomposition in both inlets and outlets of the turbine. Using the experimental data obtained, the model is fully validated, with special focus on the reflected and transmitted components for analysing the performance of the model and its non-linear acoustics prediction capabilities. The model presents a very high degree of correlation with the experimental results, providing a range of errors similar to the uncertainty of the measurements, even in the medium- and high-frequency spectra.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the 'Ayuda a Primeros Proyectos de Investigacion' (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain. P.S. was partially supported through contract FPI-2017-S2-1428 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.Serrano, J.; Arnau Martínez, FJ.; García-Cuevas Gonzålez, LM.; Soler-Blanco, P.; Cheung, R. (2021). Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions. International Journal of Engine Research. 22(2):390-406. https://doi.org/10.1177/1468087419869157S390406222Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013Torregrosa, A. J., Broatch, A., Navarro, R., & García-Tíscar, J. (2014). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research, 16(1), 31-37. doi:10.1177/1468087414562866Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Piscaglia, F., Onorati, A., Marelli, S., & Capobianco, M. (2018). A detailed one-dimensional model to predict the unsteady behavior of turbocharger turbines for internal combustion engine applications. International Journal of Engine Research, 20(3), 327-349. doi:10.1177/1468087417752525Galindo, J., Arnau, F. J., García-Cuevas, L. M., & Soler, P. (2018). Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research, 21(6), 915-926. doi:10.1177/1468087418788502Rajoo, S., Romagnoli, A., & Martinez-Botas, R. F. (2012). Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine. Energy, 38(1), 176-189. doi:10.1016/j.energy.2011.12.017Rajoo, S., & Martinez-Botas, R. (2008). Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study. International Journal of Fluid Machinery and Systems, 1(1), 155-168. doi:10.5293/ijfms.2008.1.1.155Copeland, C. D., Martinez-Botas, R., & Seiler, M. (2010). Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption. Journal of Turbomachinery, 133(3). doi:10.1115/1.4000580Copeland, C. D., Martinez-Botas, R., & Seiler, M. (2011). Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions. Journal of Turbomachinery, 134(2). doi:10.1115/1.4003171Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566Yang, M., Martinez-Botas, R., Rajoo, S., Yokoyama, T., & Ibaraki, S. (2015). An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine. Energy Conversion and Management, 105, 167-177. doi:10.1016/j.enconman.2015.06.038Copeland, C. D., Newton, P. J., Martinez-Botas, R., & Seiler, M. (2011). The Effect of Unequal Admission on the Performance and Loss Generation in a Double-Entry Turbocharger Turbine. Journal of Turbomachinery, 134(2). doi:10.1115/1.4003226Cerdoun, M., & Ghenaiet, A. (2018). Unsteady behaviour of a twin entry radial turbine under engine like inlet flow conditions. Applied Thermal Engineering, 130, 93-111. doi:10.1016/j.applthermaleng.2017.11.001Payri, F., Benajes, J., & Reyes, M. (1996). Modelling of supercharger turbines in internal-combustion engines. International Journal of Mechanical Sciences, 38(8-9), 853-869. doi:10.1016/0020-7403(95)00105-0Chiong, M. S., Rajoo, S., Martinez-Botas, R. F., & Costall, A. W. (2012). Engine turbocharger performance prediction: One-dimensional modeling of a twin entry turbine. Energy Conversion and Management, 57, 68-78. doi:10.1016/j.enconman.2011.12.001Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2016). One-dimensional pulse-flow modeling of a twin-scroll turbine. Energy, 115, 1291-1304. doi:10.1016/j.energy.2016.09.041Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Gil, A., Tiseira, A. O., García-Cuevas, L. M., UsaquÊn, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042Piùero, G., Vergara, L., Desantes, J. M., & Broatch, A. (2000). Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Measurement Science and Technology, 11(11), 1585-1595. doi:10.1088/0957-0233/11/11/307Zimmermann, R., Baar, R., & Biet, C. (2016). Determination of the isentropic turbine efficiency due to adiabatic measurements and the validation of the conditions via a new criterion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(24), 4485-4494. doi:10.1177/0954406216670683Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737Serrano, J. R., Olmeda, P., Påez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031Serrano, J. R., Arnau, F. J., Fajardo, P., Reyes Belmonte, M. A., & Vidal, F. (2012). Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. Journal of Engineering for Gas Turbines and Power, 134(10). doi:10.1115/1.4007027Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032Chen, H., Hakeem, I., & Martinez-Botas, R. F. (1996). Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 210(5), 397-408. doi:10.1243/pime_proc_1996_210_063_02Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361-370. doi:10.1016/0021-9991(74)90019-9Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629Courant, R., Friedrichs, K., & Lewy, H. (1928). �ber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32-74. doi:10.1007/bf01448839Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. doi:10.1109/proc.1978.10837Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.116190

    Semantic Processing Disturbance in Patients with Schizophrenia: A Meta-Analysis of the N400 Component

    Get PDF
    Background: Theoretically semantic processing can be separated into early automatic semantic activation and late contextualization. Semantic processing deficits have been suggested in patients with schizophrenia, however it is not clear which stage of semantic processing is impaired. We attempted to clarify this issue by conducting a meta-analysis of the N400 component.</p

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→μ+νW^+ \rightarrow \mu^+\nu and W−→μ−νW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore